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1. INTRODUCTION

Attitude and control performance depend upon the number, sensitivity, and

orientation of the on-board measurement sensors. For a given number and sen-

sitivity of the sensors, different orientations result in distinct performance

characteristics. This report derives configurations of five through eight

sensors that ensure the best possible measurement accuracy in the end-of-life

situation when all but three sensors have failed. It is assumed the sensors

are identical single degree-of-freedom sensors, such as gyros, accelerometers,

or star-slit sensors, and that failure detection is accomplished by some other

means than the sensors themselves.

A number of studies have approached the problem of optimizing the

relative orientation of sensors1 ,2 but not with the end-of-life criterion used

here. In particular, PeJsa1 gave optimum configurations for 3 through 10

sensors based on the combined measurement accuracy of all the sensors taken

" together. He found that relative sensor orientations pointed to the faces of

regular polyhedra in the cases of 3, 4, 6, and 10 sensors, and that they were

equally spaced around a cone with a half-angle of 54.74' for 3, 4, 5 and 7

sensors. For 3 or 4 sensors, the single-cone configurations are identical to

the corresponding regular polyhedra (cube and octahedron) configurations.

The optimal end-of-life configurations may, in general, be different from

the polyhedra and cone configurations examined by PeJsa, but it is difficult

to visualize other good candidate configurations. Given that the sensor ori-

entations lie in a single cone, it is possible to find the optimal cone half-

angle, but this is an optimization over a small subclass of all possible sen-

sor configurations. Following the examples of the regular polyhedra, it is
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more plausible that the optimum configurations resemble uniform distributions

of sensor orientations over a hemisphere rather than concentration on a single

cone.

We developed a numerical iterative technique to perform the end-of-life

optimization and applied it to the cases of five, six, seven, and eight sen-

sors. The results for five and six sensors were, respectively, the single

cone and dodecahedron configurations which have already been extensively

studied.3  For seven and eight sensors, new configurations were found that

gave better end-of-life performance than the cone arrangements described by

Pejsa.

We emphasize that in no case have we analytically proven the new con-

figurations are true optima. In a strict mathematical sense, the config-

urations are only new lower bounds for the true optimal configurations.

However, the numerical evidence, based on the convergence properties of the

algorithm, indicates that the new configurations may well be the true

optima. The new configurations are viable alternatives to the previous cone

arrangements since they are certainly better at the end of life, and have

different performance characteristics throughout their lifetimes. The

relative merits of the different configurations are discussed in the results.
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II. PERFORMANCE CRITERION

The linear filter equations used to do state estimation are well

known.2,4 The usual expression of these equations is

z mHz + e (1)

where z is an n-dimensional vector of sensor measurements, H is an n x 3

geometry matrix, x Is a 3-dimensional state vector, and e is an n-dimensional

vector of measurement noise. The statistics of e are assumed to be

E(e) - 0, E(eeT) - 02, (2)

where I is the n x n identity matrix. The least squares estimate x of x is

given as

i (HTH) -1 "Tz (3)

and the estimation error covariance matrix is

C - E [(x-i) ( T (HTH)-1 02 (4)

The last equation indicates that the error covariance is a function of the

2
sensor geometry H and the variance a of the measurement noise. Since we are
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only concerned with the sensor geometry, it will be assumed without loss of

generality that 02 . 1.

One performance criterion of a sensor geometry matrix is the determinant,

ICI, of the associated covariance matrix - good geometries yield small deter-

minants. The square root of ICt is proportional to the volume of the error

ellipsoid associated with the measurements.2 Rather than minimize ICI, it is

often more convenient to maximize lC- 1 1, or equivalently, maximize JNTHI. HTH

is sometimes called the "information matrix" of the measurements because more

information from better placed or additional sensors implies a smaller

covariance in the estimate.

The matrix H is composed of n rows of 3-dimensional unit vectors where

each vector describes the direction cosines of a sensor relative to the

direction being measured, i.e.

H = 2  hih = 1 for i - 1, n., nl (5)

The determinant IHTHI can be divided into the sum of triple products of each

subset of three of the n vectors.5 The resulting relation,

T n-2 n-1

JHTHI 'a I I I [(h i x h.1 h k )]2 ,  (6)

i1 J-i+l kfj+l

may be loosely interpreted to mean the total information in n vectors is the

sum of the information contained in all subsets of three vectors. Note the
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special case where n - 3 implies that the information content of three sensors

is simply the square of their triple product. In this case the volume of the

error ellipsoid is inversely proportional to the magnitude of the triple

product.

The above formula is useful for calculating the effect on estimation

error when some of the original n sensors have failed; the remaining infor-

mation is the sum over all possible triple products of the remaining func-

tioning sensors. When all but three sensors have failed, such as might occur

at the end of a long lifetime, the remaining information is the square of the

triple product of the last three sensor direction vectors.

The value of a sensor configuration is defined as the minimum triple

product squared within the configuration. This value corresponds to the

information remaining after the worst case of n - 3 sensor failures. This

worst case analysis gives a sure lower limit on end-of-life performance, and

is a good figure of merit when a particular attitude specification must be

met. The optimum configuration is the one with the highest value.

Another performance figure sometimes used is the minimum elgenvalue of

the information matrix RTH. The minimum eigenvalue yields the longest

semiaxis of the error ellipsoid and is a measure of the uncertainty in the

worst direction. For the case with all sensors taken together, maximizing the

determinant of the information matrix gives the same result as maximizing the

minimum eigenvalue.6 The corresponding relation is not necessarily true for

the end-of-life problem since the set of three vectors with the minimum eigen-

value may not even be the same as the set of three vectors with the minimum

triple product squared. A calculation of the minimum eigenvalues within the

7



optimized configurations indicated that although the optimization was only

with respect to the triple product criterion, there was similar improvement In

the minimum eigenvalues. The calculated worst direction uncertainties are

Included In the results.



I1. NUMERICAL OPTIMIZATION

The goal of the optimization is to find configurations of maximum value,

i.e., configurations with the maximum minimum triple product squared. The

resulting nonlinear maximin optimization problem was solved using the itera-

tive numerical method described in detail in the appendix. The general pro-

cedure is to start with some initial configuration and to continually perturb

it in such a way that its value increases. This process is repeated until no

further increase is possible, at which point the configuration should be

optimized. In practice, this procedure does not always succeed.

Typical problem encountered in general nonlinear optimization are that

the numerical scheme does not converge to a true maximum, or that the maximum

to which it converges is only local rather than global. The local maximum

problem can be attacked (for a convergent algorithm) by trying a sufficient

variety of initial conditions. Different initial conditions may converge to

different local maxima, and the analyst may then pick out the local maximum

with the highest value as the solution. If the global maximum is the only

local maximum, then all the initial configurations should converge to the same

final configuration (allowing for rotations and reflections of that configura-

tion). It is more difficult to handle a nonconvergent algorithm since the

analyst cannot tell in general whether the algorithm stopped at a local

maximum or merely failed to converge due to a pathological solution surface.

However, if all the initial configurations converge to the same one or two

maxima, one can be reasonably confident in the convergence of the algorithm.
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Ten initial configurations were tried for n - 5, and all of them con-

verged to the 54.740 single cone solution. Nine initial configurations were

tried for n = 6, and all but one converged to either the dodecahedron or the

54.740 single cone. Thus, the algorithm converged to well-known configura-

tions in 18 of the 19 test cases. This gave confidence that global optimiza-

tion was possible by using the algorithm with a variety of initial

configurations.

Seven initial configurations were chosen for the seven-sensor case. Five

of the seven cases converged to configurations of nearly the same value. When

these solutions were rotated into similar orientations, it was found that the

respective vectors were within a neighborhood of a single solution. Addition-

al sets of initial conditions were chosen in this neighborhood to further re-

fine the solution. This process of progressively following the best family of

solutions was repeated until the optimum configuration was determined to with-

in 0.01 degrees. In both the six and seven-sensor cases, one of the initial

configurations did not converge to either the global optimum or the single

cone local optimum. Although their values were better than the single cone

values, they were not as good as the global optimum values, and torsequently,

will not be included in the results.

The eight-sensor case was not examined as extensively as the previous

.ases. The initial configuration was chosen as the seven-sensor solution (see

Table I) with an additional sensor direction at * = 24.3, 0 180* and the

optimum eight-sensor configuration was derived numerically from it. Further

optimization of this eight-sensor configuration may be possible, but a more

efficient numerical algorithm is required.

10
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IV. PERFORMANCE CHARACTERISTICS OF THE OPTIMUM CONFIGURATIONS

Relative sensor orientations as determined by the numerical scheme are

given in Table I. These solutions, expressed in polar coordinates as indi-

cated in Fig. 1, have been rigidly rotated to be aligned with the coordinate

axes. The matrix HTH was computed for all sets of three vectors within each

configuration. The set of vectors with the minimum determinant of HTH defines

the configuration value, and the worst case error volume is the inverse of the

square root of that determinant. Similarly, eigenvalues of HTH were found for

each set of three vectors. The maximum semiaxis error is the inverse of the

square root of the minimum eigenvalue found among all sets of vectors. Al-

though the optimization was only with respect to worst case error volume, the

table shows there is similar improvement in the worst case semiaxis error.

The optimal configurations suggest some basic principles for good orien-

tations. The table exhibits the dodecahedron expressed as a two-cone con-

figuration indicating that cones are an integral part of good

configurations. The seven-sensor case is displayed as six vectors lying on a

cone with a seventh vector above it (Fig. 1). It can also be expressed as

five sensors on a different cone by reversing the directions of the first two

vectors and rotating coordinates. This leads to the vectors (76.0, 0.0),

(73.9, 65.5). (73.9, -65.5), (75.1, 147.7), (75.1, -147.7), (23.4, 106.0),

(23.4, -106.0) as an alternate description. Thus, the seven-sensor configura-

tion is approximately described as the intersection of two cones, one with six

sensors and the other with five sensors. The eight-sensor configuration is

somewhat different. It has 4 vectors on a cone with 2 above and 2 below it,

13
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and resembles a 10-sensor icosahedron arrangement with two sensors removed.

(Adding two sensors at (90, 30) and (90, -30) yields the approximate

icosahedron). One implication of this result is that the optimal end-of-life

nine-sensor configuration may closely resemble an icosahedron with only one

sensor removed.

The optimum arrays can be compared to the cone arrays by their perfor-

mance as individual sensors fail out of the original full array. This gives

the short term characteristics of the configuration before the end-of-life

situation is reached. We assume a situation where thermal and power con-

straints require that only three sensors be operating at any one time; when

more than three sensors are operable, such as immediately after launch, the

user chooses the three sensors that are closest to an orthogonal triad and

turns the remaining ones off. Thus, the user is assumed to maximize the array

accuracy given that particular sensors have failed. For any fixed number of

failures, the resulting accuracy depends on which of the particular sensors

failed. Performance will be measured as the volume of the error ellipsoid of

the operating sensors relative to that for an orthogonal triad. An orthogonal

triad has a relative volume of 1; less favorable configurations have larger

relative volumes.

Two performance curves are plotted for each full configuration. One

gives the mean performance after a given number of failures, and the other

gives the worst possible performance after a given number of failures. It is

always assumed the user has chosen the best available set of sensors. Aver-

ages were computed as if the failure rates were the same for all sensors,

whether active or inactive. In some applications, failure rates for standby

15



sensors are significantly lower than failure rates for active sensors, or

there is a significant probability of failure when a sensor is initially

turned on. These effects have been omitted from this study.

The performance of the single cone configuration of five sensors is

exhibited in Fig. 2. There are no orthogonal triads within the configuration,

so the performance figure is greater than one, even with all the sensors

available. There is no loss of performance when one sensor fails - this is

typical of the single cone configurations. When two sensors fail, there is a

range of possible performances depending on the remaining sensors, with a

worst case performance of Just under 2.00.

Figure 3 compares the performance of a dodecahedron to a single cone.

The single cone gives better initial performance because it contains

orthogonal triads, but the dodecahedron is 29% better in worst case end-of-

life performance.

The new seven-sensor configuration is compared with the single cone

configuration in Fig. 4. The average performance of the configurations is

very similar, with the new configuration slightly better. For worst case per-

formance, the new configuration is 25% better at the end-of-life but the

single cone is better in the intermediate lifetime when two or three sensors

have failed. A comparison of the eight-sensor configurations (Fig. 5)

indicates similar behavior. Average performances of the configurations are

nearly the same, however, for worst case performance, the new configuration is

202 better at the end-of-life while the two-cone configuration is better in

the intermediate lifetime of two and three failures.

16
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-- OPTIMUM (single cone) CONFIGURATION

_L WORST CASE PERFORMANCE
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Fig. 2. Performance of Optimum Five-Sensor Configuration
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DODECAHEDRON CONFIGURATION
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Fig. 3. Performance of Optimum Six-Sensor Configurations
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Fig. 4. Performance of Optimum Seven-Sensor Configurations
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Fig. 5. Performance of Optimum Eight-Sensor Configurations
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V. SUMMARY

Relative sensor orientations were derived that optimized end-of-life mea-

surement accuracy in the worst case situation when all but three sensors had

failed. For five and six sensors, the results were the well-known single cone

and dodecahedron configurations. For seven and eight sensors, new configura-

tions were found. The seven-sensor configuration is roughly described as six

vectors lying unequally spaced on a cone with a half-angle of 61.2" while the

seventh points 24.3' away from the cone axis. The eight-sensor configuration

somewhat resembles a 10-sensor icosahedron arrangement with two sensors

removed. The new configurations are at least 20% more accurate in end-of-life

performance than previously proposed configurations, but are less accurate in

the intermediate lifetimes when only two or three sensors have failed. The

optimization was performed by numerical iterative methods and further

improvement may be possible, particularly in the case of eight sensors.
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APPENDIX

Haximin Optimization Using Linear Programming

The maximin optimization problem is to find the configuration which has

the maximum minimum triple product squared. We describe the configuration by

a vector y with 2n components that specifies the 2n independent variables in

the n sensor problem, and we denote each triple product squared by it(Y) where

each index value i corresponds to a different set of three vectors. The ob-

jective of the optimization is to maximize C(y) where

C(y) = Jmin {f(y), f2 (y),..., f (y)} (7)

and N is the total number of distinct sets of three vectors.

Numerical optimization was accomplished by a direct search method that

for any point y finds a neighboring point y + Ay such that C(y + Ay) > C(y).

In general, there are many possible directions for Ay that increase the con-

figuration value. To obtain the largest possible increase for a given length

of by, the problem was rephrased at each point y as a constrained optimization

with the objective of maximizing one of the fils subject to the constraints

that it was less than or equal to all the other fi's. The minimum function f,

at y was chosen as the objective function.

The constrained problem may be solved by locally linearizing all the

functions fi(y) and solving the resulting linear programming problem. This
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approach to the constrained problem is similar to linear approximation pro-

gramming, 7 , 8 but there is a distinct difference because of the context of the

constrained problem within the overall maximin problem. Ordinarily, the so-

lution to the linearized problem may violate some constraints of the full

problem which necessitates a restoration move to satisfy the constraints. In

the maximin problem, however, the linearized move is an improvement as long as

min ffi(y + Ay)} > ltiN {fi(y)} * (8)

In particular, this means that a different fi may be the minimum at y + Ay

(indicating that a constraint of the previous full problem was violated) and

yet a restoration move may not be required. Thus, restoration moves are not

necessary since a different objective function can be chosen at each step.

The algorithm is described in detail below.

Each iteration starts by calculating the triple product squared of each

set of 3 vectors and denotes them fi(y) - 1, 2, ... N in order of increasing

magnitude.

For nearby points, the function values are approximated by

2n 3f
fi(y + Ay) - fi(y) + E -- Ayj i =,..., N, (9)

where y - (YI, Y 2 1 9° Y2n ) °

24



The partial derivatives are approximated locally using a difference

approximation

fi f i (y + hi) -i(y)

where h is a small vector in the yj direction. The coordinate directions yjj!
are redefined at each step of the iteration as two mutually perpendicular co-

ordinates that are perpendicular to each vector. They may be visualized as

the allowable directions of motion of the vector tip in a local area on the

surface of a unit sphere.

Given the rate of change of the functions with respect to each of the

local coordinates, we seek the direction that maximizes the minimum of the

functions. Choosing f, to remain as the minimum, the problem and constraints

may be expressed as:

maximize ff(y + (1f)
Ayy) - f(y)}

subject to:

fi(Y + Ay) ) fI(y +Ay), i 2,..., N.

This formulation avoids ambiguities arising from strictly rotational modes of

changes. In general, there are three possible directions Ay that give no

change in any of the functions since they correspond to a rigid rotation of

the entire configuration. The maximization formulation avoids these possi-

bilities because they yield no change in configuration value.

25



Using the linear function approximations, the maximization is expressed

as a linear programming problem. An additional constraint is added to bound

Ay to the region of validity of the linear approximations. This constraint

also bounds the feasibility region for the solution. The resulting equations

are:

maximize 2n f1
Ay j

subject to:

2n ( y ) i(y) - fi(y),i - 2,..., N. (12)

[ayl 4 constant

There is no constraint on the signs of Ay in this formulation, so it was

converted into the usual non-negative format by the change of variables

AYj = Ay - AyF (13)

where

0 , .

26



The magnitude constraint on ty was expressed by the linear relation

2n

* Ay' + Ay" 4 100. (14)

Thia allowed the solution to be found easily using a standard linear

programming routine. The resulting optimal vector Ay was scaled into a

smaller size reflecting the local validity of the linear approximation as

defined by the length hj of the vectors used to approximate the partial

derivatives.

The configuration value C(y + Ay) at the new point is tested against

C(y), and the iteration is repeated from the beginning if there is an increase

in value. In the case of no increase, the accuracy of the linear approxima-

tion is improved by reducing the magnitudes of Ay and h until the solution of

the linearized problem is a valid solution of the full problem. The algorithm

is terminated when five of the above reductions still do not yield an improved

solution.

The linear programming formulation is a first-order technique and, con-

sequently, had difficulties near local maxima and in regions of high curva-

ture. In practice, it was very helpful in bringing arbitrary configurations

into near optimal configurations, but not as successful in actually finding

the optimum from a point near the optimum. Convergence was very good for the

five-sensor case but became progressively worse as the number of sensors

increased. For the seven and eight sensor cases, the optimization process

needed to be assisted by adding initial conditions in the neighborhood of

previous suboptimal solutions in order for the true optimum to be obtained.

With this supplement, the algorithm succeeded in finding the optimum con-

figurations to the desired accuracy.
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